Member
Account Settings
Share AgencyGenius
Know someone who might benefit from AgencyGenius? We'd love it if you shared our platform with your networking group!

Documentation
Step 1: Add HTML, Css & JavaScript
<div id="webgl-fluid-background"> <!-- * WebGL Fluid Background Effect - HTML Structure * This is the HTML structure for the fluid particle animation * * BLEND MODE: active * Change to "inactive" in the JavaScript to disable the screen blend mode --> <!-- WEBGL Fluid particles canvas --> <canvas id="fluid"></canvas> </div> <!-- End of HTML Structure for WebGL Fluid Background Effect -->
<div id="webgl-fluid-css"> <!-- * WebGL Fluid Background Effect - CSS Styles * These styles position the fluid effect over the entire page --> <style> /* Container styles to ensure proper positioning */ #webgl-fluid-background { position: fixed; top: 0; left: 0; width: 100%; height: 100%; z-index: 99999; /* Using high z-index to ensure it's above everything */ pointer-events: none; /* Allows clicks to pass through to elements below */ } /* Canvas styles for the fluid animation */ #webgl-fluid-background #fluid { position: fixed; top: 0; left: 0; width: 100%; height: 100%; } </style> </div> <!-- End of CSS for WebGL Fluid Background Effect -->
<div id="webgl-fluid-javascript"> <!-- * WebGL Fluid Background Effect - JavaScript * This script creates the fluid particle animation with WebGL --> <script> // Self-executing function to avoid global scope pollution (function() { // Initialize fluid animation on page load window.addEventListener('load', () => { initFluid(); // Check for blend mode setting const blendModeActive = true; // Change to false to disable blend mode // Apply blend mode if active if (blendModeActive) { document.getElementById('fluid').style.mixBlendMode = 'screen'; } }); const initFluid = () => { // Get the canvas element const canvas = document.getElementById('fluid'); // Resize canvas to match window size function resizeCanvas() { canvas.width = window.innerWidth; canvas.height = window.innerHeight; } resizeCanvas(); // Configuration for the fluid simulation let config = { SIM_RESOLUTION: 128, DYE_RESOLUTION: 1440, CAPTURE_RESOLUTION: 512, DENSITY_DISSIPATION: 3.5, VELOCITY_DISSIPATION: 2, PRESSURE: 0.1, PRESSURE_ITERATIONS: 20, CURL: 3, SPLAT_RADIUS: 0.2, SPLAT_FORCE: 6000, SHADING: true, COLOR_UPDATE_SPEED: 10, PAUSED: false, BACK_COLOR: { r: 0, g: 0, b: 0 }, TRANSPARENT: true, } // Pointer prototype for tracking mouse/touch interactions function pointerPrototype() { this.id = -1; this.texcoordX = 0; this.texcoordY = 0; this.prevTexcoordX = 0; this.prevTexcoordY = 0; this.deltaX = 0; this.deltaY = 0; this.down = false; this.moved = false; this.color = [30, 0, 300]; } let pointers = []; pointers.push(new pointerPrototype()); // Initialize WebGL context const { gl, ext } = getWebGLContext(canvas); if (!ext.supportLinearFiltering) { config.DYE_RESOLUTION = 512; config.SHADING = false; } function getWebGLContext(canvas) { const params = { alpha: true, depth: false, stencil: false, antialias: false, preserveDrawingBuffer: false }; let gl = canvas.getContext('webgl2', params); const isWebGL2 = !!gl; if (!isWebGL2) gl = canvas.getContext('webgl', params) || canvas.getContext('experimental-webgl', params); let halfFloat; let supportLinearFiltering; if (isWebGL2) { gl.getExtension('EXT_color_buffer_float'); supportLinearFiltering = gl.getExtension('OES_texture_float_linear'); } else { halfFloat = gl.getExtension('OES_texture_half_float'); supportLinearFiltering = gl.getExtension('OES_texture_half_float_linear'); } gl.clearColor(0.0, 0.0, 0.0, 1.0); const halfFloatTexType = isWebGL2 ? gl.HALF_FLOAT : halfFloat.HALF_FLOAT_OES; let formatRGBA; let formatRG; let formatR; if (isWebGL2) { formatRGBA = getSupportedFormat(gl, gl.RGBA16F, gl.RGBA, halfFloatTexType); formatRG = getSupportedFormat(gl, gl.RG16F, gl.RG, halfFloatTexType); formatR = getSupportedFormat(gl, gl.R16F, gl.RED, halfFloatTexType); } else { formatRGBA = getSupportedFormat(gl, gl.RGBA, gl.RGBA, halfFloatTexType); formatRG = getSupportedFormat(gl, gl.RGBA, gl.RGBA, halfFloatTexType); formatR = getSupportedFormat(gl, gl.RGBA, gl.RGBA, halfFloatTexType); } return { gl, ext: { formatRGBA, formatRG, formatR, halfFloatTexType, supportLinearFiltering } }; } function getSupportedFormat(gl, internalFormat, format, type) { if (!supportRenderTextureFormat(gl, internalFormat, format, type)) { switch (internalFormat) { case gl.R16F: return getSupportedFormat(gl, gl.RG16F, gl.RG, type); case gl.RG16F: return getSupportedFormat(gl, gl.RGBA16F, gl.RGBA, type); default: return null; } } return { internalFormat, format } } function supportRenderTextureFormat(gl, internalFormat, format, type) { let texture = gl.createTexture(); gl.bindTexture(gl.TEXTURE_2D, texture); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE); gl.texImage2D(gl.TEXTURE_2D, 0, internalFormat, 4, 4, 0, format, type, null); let fbo = gl.createFramebuffer(); gl.bindFramebuffer(gl.FRAMEBUFFER, fbo); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0); let status = gl.checkFramebufferStatus(gl.FRAMEBUFFER); return status == gl.FRAMEBUFFER_COMPLETE; } class Material { constructor(vertexShader, fragmentShaderSource) { this.vertexShader = vertexShader; this.fragmentShaderSource = fragmentShaderSource; this.programs = []; this.activeProgram = null; this.uniforms = []; } setKeywords(keywords) { let hash = 0; for (let i = 0; i < keywords.length; i++) hash += hashCode(keywords[i]); let program = this.programs[hash]; if (program == null) { let fragmentShader = compileShader(gl.FRAGMENT_SHADER, this.fragmentShaderSource, keywords); program = createProgram(this.vertexShader, fragmentShader); this.programs[hash] = program; } if (program == this.activeProgram) return; this.uniforms = getUniforms(program); this.activeProgram = program; } bind() { gl.useProgram(this.activeProgram); } } class Program { constructor(vertexShader, fragmentShader) { this.uniforms = {}; this.program = createProgram(vertexShader, fragmentShader); this.uniforms = getUniforms(this.program); } bind() { gl.useProgram(this.program); } } function createProgram(vertexShader, fragmentShader) { let program = gl.createProgram(); gl.attachShader(program, vertexShader); gl.attachShader(program, fragmentShader); gl.linkProgram(program); if (!gl.getProgramParameter(program, gl.LINK_STATUS)) console.trace(gl.getProgramInfoLog(program)); return program; } function getUniforms(program) { let uniforms = []; let uniformCount = gl.getProgramParameter(program, gl.ACTIVE_UNIFORMS); for (let i = 0; i < uniformCount; i++) { let uniformName = gl.getActiveUniform(program, i).name; uniforms[uniformName] = gl.getUniformLocation(program, uniformName); } return uniforms; } function compileShader(type, source, keywords) { source = addKeywords(source, keywords); const shader = gl.createShader(type); gl.shaderSource(shader, source); gl.compileShader(shader); if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) console.trace(gl.getShaderInfoLog(shader)); return shader; } function addKeywords(source, keywords) { if (keywords == null) return source; let keywordsString = ''; keywords.forEach(keyword => { keywordsString += '#define ' + keyword + '\n'; }); return keywordsString + source; } // Load shaders const baseVertexShader = compileShader(gl.VERTEX_SHADER, ` precision highp float; attribute vec2 aPosition; varying vec2 vUv; varying vec2 vL; varying vec2 vR; varying vec2 vT; varying vec2 vB; uniform vec2 texelSize; void main () { vUv = aPosition * 0.5 + 0.5; vL = vUv - vec2(texelSize.x, 0.0); vR = vUv + vec2(texelSize.x, 0.0); vT = vUv + vec2(0.0, texelSize.y); vB = vUv - vec2(0.0, texelSize.y); gl_Position = vec4(aPosition, 0.0, 1.0); } `); const blurVertexShader = compileShader(gl.VERTEX_SHADER, ` precision highp float; attribute vec2 aPosition; varying vec2 vUv; varying vec2 vL; varying vec2 vR; uniform vec2 texelSize; void main () { vUv = aPosition * 0.5 + 0.5; float offset = 1.33333333; vL = vUv - texelSize * offset; vR = vUv + texelSize * offset; gl_Position = vec4(aPosition, 0.0, 1.0); } `); const blurShader = compileShader(gl.FRAGMENT_SHADER, ` precision mediump float; precision mediump sampler2D; varying vec2 vUv; varying vec2 vL; varying vec2 vR; uniform sampler2D uTexture; void main () { vec4 sum = texture2D(uTexture, vUv) * 0.29411764; sum += texture2D(uTexture, vL) * 0.35294117; sum += texture2D(uTexture, vR) * 0.35294117; gl_FragColor = sum; } `); const copyShader = compileShader(gl.FRAGMENT_SHADER, ` precision mediump float; precision mediump sampler2D; varying highp vec2 vUv; uniform sampler2D uTexture; void main () { gl_FragColor = texture2D(uTexture, vUv); } `); const clearShader = compileShader(gl.FRAGMENT_SHADER, ` precision mediump float; precision mediump sampler2D; varying highp vec2 vUv; uniform sampler2D uTexture; uniform float value; void main () { gl_FragColor = value * texture2D(uTexture, vUv); } `); const colorShader = compileShader(gl.FRAGMENT_SHADER, ` precision mediump float; uniform vec4 color; void main () { gl_FragColor = color; } `); const displayShaderSource = ` precision highp float; precision highp sampler2D; varying vec2 vUv; varying vec2 vL; varying vec2 vR; varying vec2 vT; varying vec2 vB; uniform sampler2D uTexture; uniform sampler2D uDithering; uniform vec2 ditherScale; uniform vec2 texelSize; vec3 linearToGamma (vec3 color) { color = max(color, vec3(0)); return max(1.055 * pow(color, vec3(0.416666667)) - 0.055, vec3(0)); } void main () { vec3 c = texture2D(uTexture, vUv).rgb; #ifdef SHADING vec3 lc = texture2D(uTexture, vL).rgb; vec3 rc = texture2D(uTexture, vR).rgb; vec3 tc = texture2D(uTexture, vT).rgb; vec3 bc = texture2D(uTexture, vB).rgb; float dx = length(rc) - length(lc); float dy = length(tc) - length(bc); vec3 n = normalize(vec3(dx, dy, length(texelSize))); vec3 l = vec3(0.0, 0.0, 1.0); float diffuse = clamp(dot(n, l) + 0.7, 0.7, 1.0); c *= diffuse; #endif float a = max(c.r, max(c.g, c.b)); gl_FragColor = vec4(c, a); } `; const splatShader = compileShader(gl.FRAGMENT_SHADER, ` precision highp float; precision highp sampler2D; varying vec2 vUv; uniform sampler2D uTarget; uniform float aspectRatio; uniform vec3 color; uniform vec2 point; uniform float radius; void main () { vec2 p = vUv - point.xy; p.x *= aspectRatio; vec3 splat = exp(-dot(p, p) / radius) * color; vec3 base = texture2D(uTarget, vUv).xyz; gl_FragColor = vec4(base + splat, 1.0); } `); const advectionShader = compileShader(gl.FRAGMENT_SHADER, ` precision highp float; precision highp sampler2D; varying vec2 vUv; uniform sampler2D uVelocity; uniform sampler2D uSource; uniform vec2 texelSize; uniform vec2 dyeTexelSize; uniform float dt; uniform float dissipation; vec4 bilerp (sampler2D sam, vec2 uv, vec2 tsize) { vec2 st = uv / tsize - 0.5; vec2 iuv = floor(st); vec2 fuv = fract(st); vec4 a = texture2D(sam, (iuv + vec2(0.5, 0.5)) * tsize); vec4 b = texture2D(sam, (iuv + vec2(1.5, 0.5)) * tsize); vec4 c = texture2D(sam, (iuv + vec2(0.5, 1.5)) * tsize); vec4 d = texture2D(sam, (iuv + vec2(1.5, 1.5)) * tsize); return mix(mix(a, b, fuv.x), mix(c, d, fuv.x), fuv.y); } void main () { #ifdef MANUAL_FILTERING vec2 coord = vUv - dt * bilerp(uVelocity, vUv, texelSize).xy * texelSize; vec4 result = bilerp(uSource, coord, dyeTexelSize); #else vec2 coord = vUv - dt * texture2D(uVelocity, vUv).xy * texelSize; vec4 result = texture2D(uSource, coord); #endif float decay = 1.0 + dissipation * dt; gl_FragColor = result / decay; }`, ext.supportLinearFiltering ? null : ['MANUAL_FILTERING'] ); const divergenceShader = compileShader(gl.FRAGMENT_SHADER, ` precision mediump float; precision mediump sampler2D; varying highp vec2 vUv; varying highp vec2 vL; varying highp vec2 vR; varying highp vec2 vT; varying highp vec2 vB; uniform sampler2D uVelocity; void main () { float L = texture2D(uVelocity, vL).x; float R = texture2D(uVelocity, vR).x; float T = texture2D(uVelocity, vT).y; float B = texture2D(uVelocity, vB).y; vec2 C = texture2D(uVelocity, vUv).xy; if (vL.x < 0.0) { L = -C.x; } if (vR.x > 1.0) { R = -C.x; } if (vT.y > 1.0) { T = -C.y; } if (vB.y < 0.0) { B = -C.y; } float div = 0.5 * (R - L + T - B); gl_FragColor = vec4(div, 0.0, 0.0, 1.0); } `); const curlShader = compileShader(gl.FRAGMENT_SHADER, ` precision mediump float; precision mediump sampler2D; varying highp vec2 vUv; varying highp vec2 vL; varying highp vec2 vR; varying highp vec2 vT; varying highp vec2 vB; uniform sampler2D uVelocity; void main () { float L = texture2D(uVelocity, vL).y; float R = texture2D(uVelocity, vR).y; float T = texture2D(uVelocity, vT).x; float B = texture2D(uVelocity, vB).x; float vorticity = R - L - T + B; gl_FragColor = vec4(0.5 * vorticity, 0.0, 0.0, 1.0); } `); const vorticityShader = compileShader(gl.FRAGMENT_SHADER, ` precision highp float; precision highp sampler2D; varying vec2 vUv; varying vec2 vL; varying vec2 vR; varying vec2 vT; varying vec2 vB; uniform sampler2D uVelocity; uniform sampler2D uCurl; uniform float curl; uniform float dt; void main () { float L = texture2D(uCurl, vL).x; float R = texture2D(uCurl, vR).x; float T = texture2D(uCurl, vT).x; float B = texture2D(uCurl, vB).x; float C = texture2D(uCurl, vUv).x; vec2 force = 0.5 * vec2(abs(T) - abs(B), abs(R) - abs(L)); force /= length(force) + 0.0001; force *= curl * C; force.y *= -1.0; vec2 velocity = texture2D(uVelocity, vUv).xy; velocity += force * dt; velocity = min(max(velocity, -1000.0), 1000.0); gl_FragColor = vec4(velocity, 0.0, 1.0); } `); const pressureShader = compileShader(gl.FRAGMENT_SHADER, ` precision mediump float; precision mediump sampler2D; varying highp vec2 vUv; varying highp vec2 vL; varying highp vec2 vR; varying highp vec2 vT; varying highp vec2 vB; uniform sampler2D uPressure; uniform sampler2D uDivergence; void main () { float L = texture2D(uPressure, vL).x; float R = texture2D(uPressure, vR).x; float T = texture2D(uPressure, vT).x; float B = texture2D(uPressure, vB).x; float C = texture2D(uPressure, vUv).x; float divergence = texture2D(uDivergence, vUv).x; float pressure = (L + R + B + T - divergence) * 0.25; gl_FragColor = vec4(pressure, 0.0, 0.0, 1.0); } `); const gradientSubtractShader = compileShader(gl.FRAGMENT_SHADER, ` precision mediump float; precision mediump sampler2D; varying highp vec2 vUv; varying highp vec2 vL; varying highp vec2 vR; varying highp vec2 vT; varying highp vec2 vB; uniform sampler2D uPressure; uniform sampler2D uVelocity; void main () { float L = texture2D(uPressure, vL).x; float R = texture2D(uPressure, vR).x; float T = texture2D(uPressure, vT).x; float B = texture2D(uPressure, vB).x; vec2 velocity = texture2D(uVelocity, vUv).xy; velocity.xy -= vec2(R - L, T - B); gl_FragColor = vec4(velocity, 0.0, 1.0); } `); const blit = (() => { gl.bindBuffer(gl.ARRAY_BUFFER, gl.createBuffer()); gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([-1, -1, -1, 1, 1, 1, 1, -1]), gl.STATIC_DRAW); gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, gl.createBuffer()); gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array([0, 1, 2, 0, 2, 3]), gl.STATIC_DRAW); gl.vertexAttribPointer(0, 2, gl.FLOAT, false, 0, 0); gl.enableVertexAttribArray(0); return (target, clear = false) => { if (target == null) { gl.viewport(0, 0, gl.drawingBufferWidth, gl.drawingBufferHeight); gl.bindFramebuffer(gl.FRAMEBUFFER, null); } else { gl.viewport(0, 0, target.width, target.height); gl.bindFramebuffer(gl.FRAMEBUFFER, target.fbo); } if (clear) { gl.clearColor(0.0, 0.0, 0.0, 1.0); gl.clear(gl.COLOR_BUFFER_BIT); } gl.drawElements(gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0); } })(); function CHECK_FRAMEBUFFER_STATUS() { let status = gl.checkFramebufferStatus(gl.FRAMEBUFFER); if (status != gl.FRAMEBUFFER_COMPLETE) console.trace("Framebuffer error: " + status); } // Initialize variable and programs let dye; let velocity; let divergence; let curl; let pressure; const blurProgram = new Program(blurVertexShader, blurShader); const copyProgram = new Program(baseVertexShader, copyShader); const clearProgram = new Program(baseVertexShader, clearShader); const colorProgram = new Program(baseVertexShader, colorShader); const splatProgram = new Program(baseVertexShader, splatShader); const advectionProgram = new Program(baseVertexShader, advectionShader); const divergenceProgram = new Program(baseVertexShader, divergenceShader); const curlProgram = new Program(baseVertexShader, curlShader); const vorticityProgram = new Program(baseVertexShader, vorticityShader); const pressureProgram = new Program(baseVertexShader, pressureShader); const gradienSubtractProgram = new Program(baseVertexShader, gradientSubtractShader); const displayMaterial = new Material(baseVertexShader, displayShaderSource); function initFramebuffers() { let simRes = getResolution(config.SIM_RESOLUTION); let dyeRes = getResolution(config.DYE_RESOLUTION); const texType = ext.halfFloatTexType; const rgba = ext.formatRGBA; const rg = ext.formatRG; const r = ext.formatR; const filtering = ext.supportLinearFiltering ? gl.LINEAR : gl.NEAREST; gl.disable(gl.BLEND); if (dye == null) dye = createDoubleFBO(dyeRes.width, dyeRes.height, rgba.internalFormat, rgba.format, texType, filtering); else dye = resizeDoubleFBO(dye, dyeRes.width, dyeRes.height, rgba.internalFormat, rgba.format, texType, filtering); if (velocity == null) velocity = createDoubleFBO(simRes.width, simRes.height, rg.internalFormat, rg.format, texType, filtering); else velocity = resizeDoubleFBO(velocity, simRes.width, simRes.height, rg.internalFormat, rg.format, texType, filtering); divergence = createFBO(simRes.width, simRes.height, r.internalFormat, r.format, texType, gl.NEAREST); curl = createFBO(simRes.width, simRes.height, r.internalFormat, r.format, texType, gl.NEAREST); pressure = createDoubleFBO(simRes.width, simRes.height, r.internalFormat, r.format, texType, gl.NEAREST); } function createFBO(w, h, internalFormat, format, type, param) { gl.activeTexture(gl.TEXTURE0); let texture = gl.createTexture(); gl.bindTexture(gl.TEXTURE_2D, texture); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, param); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, param); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE); gl.texImage2D(gl.TEXTURE_2D, 0, internalFormat, w, h, 0, format, type, null); let fbo = gl.createFramebuffer(); gl.bindFramebuffer(gl.FRAMEBUFFER, fbo); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0); gl.viewport(0, 0, w, h); gl.clear(gl.COLOR_BUFFER_BIT); let texelSizeX = 1.0 / w; let texelSizeY = 1.0 / h; return { texture, fbo, width: w, height: h, texelSizeX, texelSizeY, attach(id) { gl.activeTexture(gl.TEXTURE0 + id); gl.bindTexture(gl.TEXTURE_2D, texture); return id; } }; } function createDoubleFBO(w, h, internalFormat, format, type, param) { let fbo1 = createFBO(w, h, internalFormat, format, type, param); let fbo2 = createFBO(w, h, internalFormat, format, type, param); return { width: w, height: h, texelSizeX: fbo1.texelSizeX, texelSizeY: fbo1.texelSizeY, get read() { return fbo1; }, set read(value) { fbo1 = value; }, get write() { return fbo2; }, set write(value) { fbo2 = value; }, swap() { let temp = fbo1; fbo1 = fbo2; fbo2 = temp; } } } function resizeFBO(target, w, h, internalFormat, format, type, param) { let newFBO = createFBO(w, h, internalFormat, format, type, param); copyProgram.bind(); gl.uniform1i(copyProgram.uniforms.uTexture, target.attach(0)); blit(newFBO); return newFBO; } function resizeDoubleFBO(target, w, h, internalFormat, format, type, param) { if (target.width == w && target.height == h) return target; target.read = resizeFBO(target.read, w, h, internalFormat, format, type, param); target.write = createFBO(w, h, internalFormat, format, type, param); target.width = w; target.height = h; target.texelSizeX = 1.0 / w; target.texelSizeY = 1.0 / h; return target; } function updateKeywords() { let displayKeywords = []; if (config.SHADING) displayKeywords.push("SHADING"); displayMaterial.setKeywords(displayKeywords); } updateKeywords(); initFramebuffers(); let lastUpdateTime = Date.now(); let colorUpdateTimer = 0.0; function update() { const dt = calcDeltaTime(); if (resizeCanvas()) initFramebuffers(); updateColors(dt); applyInputs(); step(dt); render(null); requestAnimationFrame(update); } function calcDeltaTime() { let now = Date.now(); let dt = (now - lastUpdateTime) / 1000; dt = Math.min(dt, 0.016666); lastUpdateTime = now; return dt; } function resizeCanvas() { let width = scaleByPixelRatio(canvas.clientWidth); let height = scaleByPixelRatio(canvas.clientHeight); if (canvas.width != width || canvas.height != height) { canvas.width = width; canvas.height = height; return true; } return false; } function updateColors(dt) { colorUpdateTimer += dt * config.COLOR_UPDATE_SPEED; if (colorUpdateTimer >= 1) { colorUpdateTimer = wrap(colorUpdateTimer, 0, 1); pointers.forEach(p => { p.color = generateColor(); }); } } function applyInputs() { pointers.forEach(p => { if (p.moved) { p.moved = false; splatPointer(p); } }); } function step(dt) { gl.disable(gl.BLEND); curlProgram.bind(); gl.uniform2f(curlProgram.uniforms.texelSize, velocity.texelSizeX, velocity.texelSizeY); gl.uniform1i(curlProgram.uniforms.uVelocity, velocity.read.attach(0)); blit(curl); vorticityProgram.bind(); gl.uniform2f(vorticityProgram.uniforms.texelSize, velocity.texelSizeX, velocity.texelSizeY); gl.uniform1i(vorticityProgram.uniforms.uVelocity, velocity.read.attach(0)); gl.uniform1i(vorticityProgram.uniforms.uCurl, curl.attach(1)); gl.uniform1f(vorticityProgram.uniforms.curl, config.CURL); gl.uniform1f(vorticityProgram.uniforms.dt, dt); blit(velocity.write); velocity.swap(); divergenceProgram.bind(); gl.uniform2f(divergenceProgram.uniforms.texelSize, velocity.texelSizeX, velocity.texelSizeY); gl.uniform1i(divergenceProgram.uniforms.uVelocity, velocity.read.attach(0)); blit(divergence); clearProgram.bind(); gl.uniform1i(clearProgram.uniforms.uTexture, pressure.read.attach(0)); gl.uniform1f(clearProgram.uniforms.value, config.PRESSURE); blit(pressure.write); pressure.swap(); pressureProgram.bind(); gl.uniform2f(pressureProgram.uniforms.texelSize, velocity.texelSizeX, velocity.texelSizeY); gl.uniform1i(pressureProgram.uniforms.uDivergence, divergence.attach(0)); for (let i = 0; i < config.PRESSURE_ITERATIONS; i++) { gl.uniform1i(pressureProgram.uniforms.uPressure, pressure.read.attach(1)); blit(pressure.write); pressure.swap(); } gradienSubtractProgram.bind(); gl.uniform2f(gradienSubtractProgram.uniforms.texelSize, velocity.texelSizeX, velocity.texelSizeY); gl.uniform1i(gradienSubtractProgram.uniforms.uPressure, pressure.read.attach(0)); gl.uniform1i(gradienSubtractProgram.uniforms.uVelocity, velocity.read.attach(1)); blit(velocity.write); velocity.swap(); advectionProgram.bind(); gl.uniform2f(advectionProgram.uniforms.texelSize, velocity.texelSizeX, velocity.texelSizeY); if (!ext.supportLinearFiltering) gl.uniform2f(advectionProgram.uniforms.dyeTexelSize, velocity.texelSizeX, velocity.texelSizeY); let velocityId = velocity.read.attach(0); gl.uniform1i(advectionProgram.uniforms.uVelocity, velocityId); gl.uniform1i(advectionProgram.uniforms.uSource, velocityId); gl.uniform1f(advectionProgram.uniforms.dt, dt); gl.uniform1f(advectionProgram.uniforms.dissipation, config.VELOCITY_DISSIPATION); blit(velocity.write); velocity.swap(); if (!ext.supportLinearFiltering) gl.uniform2f(advectionProgram.uniforms.dyeTexelSize, dye.texelSizeX, dye.texelSizeY); gl.uniform1i(advectionProgram.uniforms.uVelocity, velocity.read.attach(0)); gl.uniform1i(advectionProgram.uniforms.uSource, dye.read.attach(1)); gl.uniform1f(advectionProgram.uniforms.dissipation, config.DENSITY_DISSIPATION); blit(dye.write); dye.swap(); } function render(target) { gl.blendFunc(gl.ONE, gl.ONE_MINUS_SRC_ALPHA); gl.enable(gl.BLEND); drawDisplay(target); } function drawDisplay(target) { let width = target == null ? gl.drawingBufferWidth : target.width; let height = target == null ? gl.drawingBufferHeight : target.height; displayMaterial.bind(); if (config.SHADING) gl.uniform2f(displayMaterial.uniforms.texelSize, 1.0 / width, 1.0 / height); gl.uniform1i(displayMaterial.uniforms.uTexture, dye.read.attach(0)); blit(target); } function splatPointer(pointer) { let dx = pointer.deltaX * config.SPLAT_FORCE; let dy = pointer.deltaY * config.SPLAT_FORCE; splat(pointer.texcoordX, pointer.texcoordY, dx, dy, pointer.color); } function clickSplat(pointer) { const color = generateColor(); color.r *= 10.0; color.g *= 10.0; color.b *= 10.0; let dx = 10 * (Math.random() - 0.5); let dy = 30 * (Math.random() - 0.5); splat(pointer.texcoordX, pointer.texcoordY, dx, dy, color); } function splat(x, y, dx, dy, color) { splatProgram.bind(); gl.uniform1i(splatProgram.uniforms.uTarget, velocity.read.attach(0)); gl.uniform1f(splatProgram.uniforms.aspectRatio, canvas.width / canvas.height); gl.uniform2f(splatProgram.uniforms.point, x, y); gl.uniform3f(splatProgram.uniforms.color, dx, dy, 0.0); gl.uniform1f(splatProgram.uniforms.radius, correctRadius(config.SPLAT_RADIUS / 100.0)); blit(velocity.write); velocity.swap(); gl.uniform1i(splatProgram.uniforms.uTarget, dye.read.attach(0)); gl.uniform3f(splatProgram.uniforms.color, color.r, color.g, color.b); blit(dye.write); dye.swap(); } function correctRadius(radius) { let aspectRatio = canvas.width / canvas.height; if (aspectRatio > 1) radius *= aspectRatio; return radius; } // Event listeners for interaction window.addEventListener('mousedown', e => { let pointer = pointers[0]; let posX = scaleByPixelRatio(e.clientX); let posY = scaleByPixelRatio(e.clientY); updatePointerDownData(pointer, -1, posX, posY); clickSplat(pointer); }); window.addEventListener('mousemove', e => { let pointer = pointers[0]; let posX = scaleByPixelRatio(e.clientX); let posY = scaleByPixelRatio(e.clientY); updatePointerMoveData(pointer, posX, posY, pointer.color); }); window.addEventListener('touchstart', e => { const touches = e.targetTouches; let pointer = pointers[0]; for (let i = 0; i < touches.length; i++) { let posX = scaleByPixelRatio(touches[i].clientX); let posY = scaleByPixelRatio(touches[i].clientY); updatePointerDownData(pointer, touches[i].identifier, posX, posY); } }); window.addEventListener('touchmove', e => { const touches = e.targetTouches; let pointer = pointers[0]; for (let i = 0; i < touches.length; i++) { let posX = scaleByPixelRatio(touches[i].clientX); let posY = scaleByPixelRatio(touches[i].clientY); updatePointerMoveData(pointer, posX, posY, pointer.color); } }, false); window.addEventListener('touchend', e => { const touches = e.changedTouches; let pointer = pointers[0]; for (let i = 0; i < touches.length; i++) { updatePointerUpData(pointer); } }); // Helper functions for pointer interactions function updatePointerDownData(pointer, id, posX, posY) { pointer.id = id; pointer.down = true; pointer.moved = false; pointer.texcoordX = posX / canvas.width; pointer.texcoordY = 1.0 - posY / canvas.height; pointer.prevTexcoordX = pointer.texcoordX; pointer.prevTexcoordY = pointer.texcoordY; pointer.deltaX = 0; pointer.deltaY = 0; pointer.color = generateColor(); } function updatePointerMoveData(pointer, posX, posY, color) { pointer.prevTexcoordX = pointer.texcoordX; pointer.prevTexcoordY = pointer.texcoordY; pointer.texcoordX = posX / canvas.width; pointer.texcoordY = 1.0 - posY / canvas.height; pointer.deltaX = correctDeltaX(pointer.texcoordX - pointer.prevTexcoordX); pointer.deltaY = correctDeltaY(pointer.texcoordY - pointer.prevTexcoordY); pointer.moved = Math.abs(pointer.deltaX) > 0 || Math.abs(pointer.deltaY) > 0; pointer.color = color; } function updatePointerUpData(pointer) { pointer.down = false; } function correctDeltaX(delta) { let aspectRatio = canvas.width / canvas.height; if (aspectRatio < 1) delta *= aspectRatio; return delta; } function correctDeltaY(delta) { let aspectRatio = canvas.width / canvas.height; if (aspectRatio > 1) delta /= aspectRatio; return delta; } // Color generation functions function generateColor() { let c = HSVtoRGB(Math.random(), 1.0, 1.0); c.r *= 0.15; c.g *= 0.15; c.b *= 0.15; return c; } function HSVtoRGB(h, s, v) { let r, g, b, i, f, p, q, t; i = Math.floor(h * 6); f = h * 6 - i; p = v * (1 - s); q = v * (1 - f * s); t = v * (1 - (1 - f) * s); switch (i % 6) { case 0: r = v, g = t, b = p; break; case 1: r = q, g = v, b = p; break; case 2: r = p, g = v, b = t; break; case 3: r = p, g = q, b = v; break; case 4: r = t, g = p, b = v; break; case 5: r = v, g = p, b = q; break; } return { r, g, b }; } // Utility functions function wrap(value, min, max) { let range = max - min; if (range == 0) return min; return (value - min) % range + min; } function getResolution(resolution) { let aspectRatio = gl.drawingBufferWidth / gl.drawingBufferHeight; if (aspectRatio < 1) aspectRatio = 1.0 / aspectRatio; let min = Math.round(resolution); let max = Math.round(resolution * aspectRatio); if (gl.drawingBufferWidth > gl.drawingBufferHeight) return { width: max, height: min }; else return { width: min, height: max }; } function scaleByPixelRatio(input) { let pixelRatio = window.devicePixelRatio || 1; return Math.floor(input * pixelRatio); } function hashCode(s) { if (s.length == 0) return 0; let hash = 0; for (let i = 0; i < s.length; i++) { hash = (hash << 5) - hash + s.charCodeAt(i); hash |= 0; // Convert to 32bit integer } return hash; } // Start the animation update(); // Add some initial splats to make it interesting setTimeout(() => { for (let i = 0; i < 5; i++) { const color = generateColor(); color.r *= 10.0; color.g *= 10.0; color.b *= 10.0; const x = Math.random(); const y = Math.random(); const dx = 1000 * (Math.random() - 0.5); const dy = 1000 * (Math.random() - 0.5); splat(x, y, dx, dy, color); } }, 100); // Handle window resize window.addEventListener('resize', () => { resizeCanvas(); }); }; })(); </script> </div> <!-- End of JavaScript for WebGL Fluid Background Effect -->
<div id="snippet-niklz2ru"> <!-- HTML SECTION START --> <div id="webgl-fluid-background"> <!-- * WebGL Fluid Background Effect - HTML Structure * This is the HTML structure for the fluid particle animation * * BLEND MODE: active * Change to "inactive" in the JavaScript to disable the screen blend mode --> <!-- WEBGL Fluid particles canvas --> <canvas id="fluid"></canvas> </div> <!-- End of HTML Structure for WebGL Fluid Background Effect --> <!-- HTML SECTION END --> <!-- CSS SECTION START --> <style> <div id="webgl-fluid-css"> <!-- * WebGL Fluid Background Effect - CSS Styles * These styles position the fluid effect over the entire page --> <style> /* Container styles to ensure proper positioning */ #webgl-fluid-background { position: fixed; top: 0; left: 0; width: 100%; height: 100%; z-index: 99999; /* Using high z-index to ensure it's above everything */ pointer-events: none; /* Allows clicks to pass through to elements below */ } /* Canvas styles for the fluid animation */ #webgl-fluid-background #fluid { position: fixed; top: 0; left: 0; width: 100%; height: 100%; } </style> </div> <!-- End of CSS for WebGL Fluid Background Effect --> </style> <!-- CSS SECTION END --> <!-- JAVASCRIPT SECTION START --> <script> <div id="webgl-fluid-javascript"> <!-- * WebGL Fluid Background Effect - JavaScript * This script creates the fluid particle animation with WebGL --> <script> // Self-executing function to avoid global scope pollution (function() { // Initialize fluid animation on page load window.addEventListener('load', () => { initFluid(); // Check for blend mode setting const blendModeActive = true; // Change to false to disable blend mode // Apply blend mode if active if (blendModeActive) { document.getElementById('fluid').style.mixBlendMode = 'screen'; } }); const initFluid = () => { // Get the canvas element const canvas = document.getElementById('fluid'); // Resize canvas to match window size function resizeCanvas() { canvas.width = window.innerWidth; canvas.height = window.innerHeight; } resizeCanvas(); // Configuration for the fluid simulation let config = { SIM_RESOLUTION: 128, DYE_RESOLUTION: 1440, CAPTURE_RESOLUTION: 512, DENSITY_DISSIPATION: 3.5, VELOCITY_DISSIPATION: 2, PRESSURE: 0.1, PRESSURE_ITERATIONS: 20, CURL: 3, SPLAT_RADIUS: 0.2, SPLAT_FORCE: 6000, SHADING: true, COLOR_UPDATE_SPEED: 10, PAUSED: false, BACK_COLOR: { r: 0, g: 0, b: 0 }, TRANSPARENT: true, } // Pointer prototype for tracking mouse/touch interactions function pointerPrototype() { this.id = -1; this.texcoordX = 0; this.texcoordY = 0; this.prevTexcoordX = 0; this.prevTexcoordY = 0; this.deltaX = 0; this.deltaY = 0; this.down = false; this.moved = false; this.color = [30, 0, 300]; } let pointers = []; pointers.push(new pointerPrototype()); // Initialize WebGL context const { gl, ext } = getWebGLContext(canvas); if (!ext.supportLinearFiltering) { config.DYE_RESOLUTION = 512; config.SHADING = false; } function getWebGLContext(canvas) { const params = { alpha: true, depth: false, stencil: false, antialias: false, preserveDrawingBuffer: false }; let gl = canvas.getContext('webgl2', params); const isWebGL2 = !!gl; if (!isWebGL2) gl = canvas.getContext('webgl', params) || canvas.getContext('experimental-webgl', params); let halfFloat; let supportLinearFiltering; if (isWebGL2) { gl.getExtension('EXT_color_buffer_float'); supportLinearFiltering = gl.getExtension('OES_texture_float_linear'); } else { halfFloat = gl.getExtension('OES_texture_half_float'); supportLinearFiltering = gl.getExtension('OES_texture_half_float_linear'); } gl.clearColor(0.0, 0.0, 0.0, 1.0); const halfFloatTexType = isWebGL2 ? gl.HALF_FLOAT : halfFloat.HALF_FLOAT_OES; let formatRGBA; let formatRG; let formatR; if (isWebGL2) { formatRGBA = getSupportedFormat(gl, gl.RGBA16F, gl.RGBA, halfFloatTexType); formatRG = getSupportedFormat(gl, gl.RG16F, gl.RG, halfFloatTexType); formatR = getSupportedFormat(gl, gl.R16F, gl.RED, halfFloatTexType); } else { formatRGBA = getSupportedFormat(gl, gl.RGBA, gl.RGBA, halfFloatTexType); formatRG = getSupportedFormat(gl, gl.RGBA, gl.RGBA, halfFloatTexType); formatR = getSupportedFormat(gl, gl.RGBA, gl.RGBA, halfFloatTexType); } return { gl, ext: { formatRGBA, formatRG, formatR, halfFloatTexType, supportLinearFiltering } }; } function getSupportedFormat(gl, internalFormat, format, type) { if (!supportRenderTextureFormat(gl, internalFormat, format, type)) { switch (internalFormat) { case gl.R16F: return getSupportedFormat(gl, gl.RG16F, gl.RG, type); case gl.RG16F: return getSupportedFormat(gl, gl.RGBA16F, gl.RGBA, type); default: return null; } } return { internalFormat, format } } function supportRenderTextureFormat(gl, internalFormat, format, type) { let texture = gl.createTexture(); gl.bindTexture(gl.TEXTURE_2D, texture); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE); gl.texImage2D(gl.TEXTURE_2D, 0, internalFormat, 4, 4, 0, format, type, null); let fbo = gl.createFramebuffer(); gl.bindFramebuffer(gl.FRAMEBUFFER, fbo); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0); let status = gl.checkFramebufferStatus(gl.FRAMEBUFFER); return status == gl.FRAMEBUFFER_COMPLETE; } class Material { constructor(vertexShader, fragmentShaderSource) { this.vertexShader = vertexShader; this.fragmentShaderSource = fragmentShaderSource; this.programs = []; this.activeProgram = null; this.uniforms = []; } setKeywords(keywords) { let hash = 0; for (let i = 0; i < keywords.length; i++) hash += hashCode(keywords[i]); let program = this.programs[hash]; if (program == null) { let fragmentShader = compileShader(gl.FRAGMENT_SHADER, this.fragmentShaderSource, keywords); program = createProgram(this.vertexShader, fragmentShader); this.programs[hash] = program; } if (program == this.activeProgram) return; this.uniforms = getUniforms(program); this.activeProgram = program; } bind() { gl.useProgram(this.activeProgram); } } class Program { constructor(vertexShader, fragmentShader) { this.uniforms = {}; this.program = createProgram(vertexShader, fragmentShader); this.uniforms = getUniforms(this.program); } bind() { gl.useProgram(this.program); } } function createProgram(vertexShader, fragmentShader) { let program = gl.createProgram(); gl.attachShader(program, vertexShader); gl.attachShader(program, fragmentShader); gl.linkProgram(program); if (!gl.getProgramParameter(program, gl.LINK_STATUS)) console.trace(gl.getProgramInfoLog(program)); return program; } function getUniforms(program) { let uniforms = []; let uniformCount = gl.getProgramParameter(program, gl.ACTIVE_UNIFORMS); for (let i = 0; i < uniformCount; i++) { let uniformName = gl.getActiveUniform(program, i).name; uniforms[uniformName] = gl.getUniformLocation(program, uniformName); } return uniforms; } function compileShader(type, source, keywords) { source = addKeywords(source, keywords); const shader = gl.createShader(type); gl.shaderSource(shader, source); gl.compileShader(shader); if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) console.trace(gl.getShaderInfoLog(shader)); return shader; } function addKeywords(source, keywords) { if (keywords == null) return source; let keywordsString = ''; keywords.forEach(keyword => { keywordsString += '#define ' + keyword + '\n'; }); return keywordsString + source; } // Load shaders const baseVertexShader = compileShader(gl.VERTEX_SHADER, ` precision highp float; attribute vec2 aPosition; varying vec2 vUv; varying vec2 vL; varying vec2 vR; varying vec2 vT; varying vec2 vB; uniform vec2 texelSize; void main () { vUv = aPosition * 0.5 + 0.5; vL = vUv - vec2(texelSize.x, 0.0); vR = vUv + vec2(texelSize.x, 0.0); vT = vUv + vec2(0.0, texelSize.y); vB = vUv - vec2(0.0, texelSize.y); gl_Position = vec4(aPosition, 0.0, 1.0); } `); const blurVertexShader = compileShader(gl.VERTEX_SHADER, ` precision highp float; attribute vec2 aPosition; varying vec2 vUv; varying vec2 vL; varying vec2 vR; uniform vec2 texelSize; void main () { vUv = aPosition * 0.5 + 0.5; float offset = 1.33333333; vL = vUv - texelSize * offset; vR = vUv + texelSize * offset; gl_Position = vec4(aPosition, 0.0, 1.0); } `); const blurShader = compileShader(gl.FRAGMENT_SHADER, ` precision mediump float; precision mediump sampler2D; varying vec2 vUv; varying vec2 vL; varying vec2 vR; uniform sampler2D uTexture; void main () { vec4 sum = texture2D(uTexture, vUv) * 0.29411764; sum += texture2D(uTexture, vL) * 0.35294117; sum += texture2D(uTexture, vR) * 0.35294117; gl_FragColor = sum; } `); const copyShader = compileShader(gl.FRAGMENT_SHADER, ` precision mediump float; precision mediump sampler2D; varying highp vec2 vUv; uniform sampler2D uTexture; void main () { gl_FragColor = texture2D(uTexture, vUv); } `); const clearShader = compileShader(gl.FRAGMENT_SHADER, ` precision mediump float; precision mediump sampler2D; varying highp vec2 vUv; uniform sampler2D uTexture; uniform float value; void main () { gl_FragColor = value * texture2D(uTexture, vUv); } `); const colorShader = compileShader(gl.FRAGMENT_SHADER, ` precision mediump float; uniform vec4 color; void main () { gl_FragColor = color; } `); const displayShaderSource = ` precision highp float; precision highp sampler2D; varying vec2 vUv; varying vec2 vL; varying vec2 vR; varying vec2 vT; varying vec2 vB; uniform sampler2D uTexture; uniform sampler2D uDithering; uniform vec2 ditherScale; uniform vec2 texelSize; vec3 linearToGamma (vec3 color) { color = max(color, vec3(0)); return max(1.055 * pow(color, vec3(0.416666667)) - 0.055, vec3(0)); } void main () { vec3 c = texture2D(uTexture, vUv).rgb; #ifdef SHADING vec3 lc = texture2D(uTexture, vL).rgb; vec3 rc = texture2D(uTexture, vR).rgb; vec3 tc = texture2D(uTexture, vT).rgb; vec3 bc = texture2D(uTexture, vB).rgb; float dx = length(rc) - length(lc); float dy = length(tc) - length(bc); vec3 n = normalize(vec3(dx, dy, length(texelSize))); vec3 l = vec3(0.0, 0.0, 1.0); float diffuse = clamp(dot(n, l) + 0.7, 0.7, 1.0); c *= diffuse; #endif float a = max(c.r, max(c.g, c.b)); gl_FragColor = vec4(c, a); } `; const splatShader = compileShader(gl.FRAGMENT_SHADER, ` precision highp float; precision highp sampler2D; varying vec2 vUv; uniform sampler2D uTarget; uniform float aspectRatio; uniform vec3 color; uniform vec2 point; uniform float radius; void main () { vec2 p = vUv - point.xy; p.x *= aspectRatio; vec3 splat = exp(-dot(p, p) / radius) * color; vec3 base = texture2D(uTarget, vUv).xyz; gl_FragColor = vec4(base + splat, 1.0); } `); const advectionShader = compileShader(gl.FRAGMENT_SHADER, ` precision highp float; precision highp sampler2D; varying vec2 vUv; uniform sampler2D uVelocity; uniform sampler2D uSource; uniform vec2 texelSize; uniform vec2 dyeTexelSize; uniform float dt; uniform float dissipation; vec4 bilerp (sampler2D sam, vec2 uv, vec2 tsize) { vec2 st = uv / tsize - 0.5; vec2 iuv = floor(st); vec2 fuv = fract(st); vec4 a = texture2D(sam, (iuv + vec2(0.5, 0.5)) * tsize); vec4 b = texture2D(sam, (iuv + vec2(1.5, 0.5)) * tsize); vec4 c = texture2D(sam, (iuv + vec2(0.5, 1.5)) * tsize); vec4 d = texture2D(sam, (iuv + vec2(1.5, 1.5)) * tsize); return mix(mix(a, b, fuv.x), mix(c, d, fuv.x), fuv.y); } void main () { #ifdef MANUAL_FILTERING vec2 coord = vUv - dt * bilerp(uVelocity, vUv, texelSize).xy * texelSize; vec4 result = bilerp(uSource, coord, dyeTexelSize); #else vec2 coord = vUv - dt * texture2D(uVelocity, vUv).xy * texelSize; vec4 result = texture2D(uSource, coord); #endif float decay = 1.0 + dissipation * dt; gl_FragColor = result / decay; }`, ext.supportLinearFiltering ? null : ['MANUAL_FILTERING'] ); const divergenceShader = compileShader(gl.FRAGMENT_SHADER, ` precision mediump float; precision mediump sampler2D; varying highp vec2 vUv; varying highp vec2 vL; varying highp vec2 vR; varying highp vec2 vT; varying highp vec2 vB; uniform sampler2D uVelocity; void main () { float L = texture2D(uVelocity, vL).x; float R = texture2D(uVelocity, vR).x; float T = texture2D(uVelocity, vT).y; float B = texture2D(uVelocity, vB).y; vec2 C = texture2D(uVelocity, vUv).xy; if (vL.x < 0.0) { L = -C.x; } if (vR.x > 1.0) { R = -C.x; } if (vT.y > 1.0) { T = -C.y; } if (vB.y < 0.0) { B = -C.y; } float div = 0.5 * (R - L + T - B); gl_FragColor = vec4(div, 0.0, 0.0, 1.0); } `); const curlShader = compileShader(gl.FRAGMENT_SHADER, ` precision mediump float; precision mediump sampler2D; varying highp vec2 vUv; varying highp vec2 vL; varying highp vec2 vR; varying highp vec2 vT; varying highp vec2 vB; uniform sampler2D uVelocity; void main () { float L = texture2D(uVelocity, vL).y; float R = texture2D(uVelocity, vR).y; float T = texture2D(uVelocity, vT).x; float B = texture2D(uVelocity, vB).x; float vorticity = R - L - T + B; gl_FragColor = vec4(0.5 * vorticity, 0.0, 0.0, 1.0); } `); const vorticityShader = compileShader(gl.FRAGMENT_SHADER, ` precision highp float; precision highp sampler2D; varying vec2 vUv; varying vec2 vL; varying vec2 vR; varying vec2 vT; varying vec2 vB; uniform sampler2D uVelocity; uniform sampler2D uCurl; uniform float curl; uniform float dt; void main () { float L = texture2D(uCurl, vL).x; float R = texture2D(uCurl, vR).x; float T = texture2D(uCurl, vT).x; float B = texture2D(uCurl, vB).x; float C = texture2D(uCurl, vUv).x; vec2 force = 0.5 * vec2(abs(T) - abs(B), abs(R) - abs(L)); force /= length(force) + 0.0001; force *= curl * C; force.y *= -1.0; vec2 velocity = texture2D(uVelocity, vUv).xy; velocity += force * dt; velocity = min(max(velocity, -1000.0), 1000.0); gl_FragColor = vec4(velocity, 0.0, 1.0); } `); const pressureShader = compileShader(gl.FRAGMENT_SHADER, ` precision mediump float; precision mediump sampler2D; varying highp vec2 vUv; varying highp vec2 vL; varying highp vec2 vR; varying highp vec2 vT; varying highp vec2 vB; uniform sampler2D uPressure; uniform sampler2D uDivergence; void main () { float L = texture2D(uPressure, vL).x; float R = texture2D(uPressure, vR).x; float T = texture2D(uPressure, vT).x; float B = texture2D(uPressure, vB).x; float C = texture2D(uPressure, vUv).x; float divergence = texture2D(uDivergence, vUv).x; float pressure = (L + R + B + T - divergence) * 0.25; gl_FragColor = vec4(pressure, 0.0, 0.0, 1.0); } `); const gradientSubtractShader = compileShader(gl.FRAGMENT_SHADER, ` precision mediump float; precision mediump sampler2D; varying highp vec2 vUv; varying highp vec2 vL; varying highp vec2 vR; varying highp vec2 vT; varying highp vec2 vB; uniform sampler2D uPressure; uniform sampler2D uVelocity; void main () { float L = texture2D(uPressure, vL).x; float R = texture2D(uPressure, vR).x; float T = texture2D(uPressure, vT).x; float B = texture2D(uPressure, vB).x; vec2 velocity = texture2D(uVelocity, vUv).xy; velocity.xy -= vec2(R - L, T - B); gl_FragColor = vec4(velocity, 0.0, 1.0); } `); const blit = (() => { gl.bindBuffer(gl.ARRAY_BUFFER, gl.createBuffer()); gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([-1, -1, -1, 1, 1, 1, 1, -1]), gl.STATIC_DRAW); gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, gl.createBuffer()); gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array([0, 1, 2, 0, 2, 3]), gl.STATIC_DRAW); gl.vertexAttribPointer(0, 2, gl.FLOAT, false, 0, 0); gl.enableVertexAttribArray(0); return (target, clear = false) => { if (target == null) { gl.viewport(0, 0, gl.drawingBufferWidth, gl.drawingBufferHeight); gl.bindFramebuffer(gl.FRAMEBUFFER, null); } else { gl.viewport(0, 0, target.width, target.height); gl.bindFramebuffer(gl.FRAMEBUFFER, target.fbo); } if (clear) { gl.clearColor(0.0, 0.0, 0.0, 1.0); gl.clear(gl.COLOR_BUFFER_BIT); } gl.drawElements(gl.TRIANGLES, 6, gl.UNSIGNED_SHORT, 0); } })(); function CHECK_FRAMEBUFFER_STATUS() { let status = gl.checkFramebufferStatus(gl.FRAMEBUFFER); if (status != gl.FRAMEBUFFER_COMPLETE) console.trace("Framebuffer error: " + status); } // Initialize variable and programs let dye; let velocity; let divergence; let curl; let pressure; const blurProgram = new Program(blurVertexShader, blurShader); const copyProgram = new Program(baseVertexShader, copyShader); const clearProgram = new Program(baseVertexShader, clearShader); const colorProgram = new Program(baseVertexShader, colorShader); const splatProgram = new Program(baseVertexShader, splatShader); const advectionProgram = new Program(baseVertexShader, advectionShader); const divergenceProgram = new Program(baseVertexShader, divergenceShader); const curlProgram = new Program(baseVertexShader, curlShader); const vorticityProgram = new Program(baseVertexShader, vorticityShader); const pressureProgram = new Program(baseVertexShader, pressureShader); const gradienSubtractProgram = new Program(baseVertexShader, gradientSubtractShader); const displayMaterial = new Material(baseVertexShader, displayShaderSource); function initFramebuffers() { let simRes = getResolution(config.SIM_RESOLUTION); let dyeRes = getResolution(config.DYE_RESOLUTION); const texType = ext.halfFloatTexType; const rgba = ext.formatRGBA; const rg = ext.formatRG; const r = ext.formatR; const filtering = ext.supportLinearFiltering ? gl.LINEAR : gl.NEAREST; gl.disable(gl.BLEND); if (dye == null) dye = createDoubleFBO(dyeRes.width, dyeRes.height, rgba.internalFormat, rgba.format, texType, filtering); else dye = resizeDoubleFBO(dye, dyeRes.width, dyeRes.height, rgba.internalFormat, rgba.format, texType, filtering); if (velocity == null) velocity = createDoubleFBO(simRes.width, simRes.height, rg.internalFormat, rg.format, texType, filtering); else velocity = resizeDoubleFBO(velocity, simRes.width, simRes.height, rg.internalFormat, rg.format, texType, filtering); divergence = createFBO(simRes.width, simRes.height, r.internalFormat, r.format, texType, gl.NEAREST); curl = createFBO(simRes.width, simRes.height, r.internalFormat, r.format, texType, gl.NEAREST); pressure = createDoubleFBO(simRes.width, simRes.height, r.internalFormat, r.format, texType, gl.NEAREST); } function createFBO(w, h, internalFormat, format, type, param) { gl.activeTexture(gl.TEXTURE0); let texture = gl.createTexture(); gl.bindTexture(gl.TEXTURE_2D, texture); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, param); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, param); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE); gl.texImage2D(gl.TEXTURE_2D, 0, internalFormat, w, h, 0, format, type, null); let fbo = gl.createFramebuffer(); gl.bindFramebuffer(gl.FRAMEBUFFER, fbo); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, texture, 0); gl.viewport(0, 0, w, h); gl.clear(gl.COLOR_BUFFER_BIT); let texelSizeX = 1.0 / w; let texelSizeY = 1.0 / h; return { texture, fbo, width: w, height: h, texelSizeX, texelSizeY, attach(id) { gl.activeTexture(gl.TEXTURE0 + id); gl.bindTexture(gl.TEXTURE_2D, texture); return id; } }; } function createDoubleFBO(w, h, internalFormat, format, type, param) { let fbo1 = createFBO(w, h, internalFormat, format, type, param); let fbo2 = createFBO(w, h, internalFormat, format, type, param); return { width: w, height: h, texelSizeX: fbo1.texelSizeX, texelSizeY: fbo1.texelSizeY, get read() { return fbo1; }, set read(value) { fbo1 = value; }, get write() { return fbo2; }, set write(value) { fbo2 = value; }, swap() { let temp = fbo1; fbo1 = fbo2; fbo2 = temp; } } } function resizeFBO(target, w, h, internalFormat, format, type, param) { let newFBO = createFBO(w, h, internalFormat, format, type, param); copyProgram.bind(); gl.uniform1i(copyProgram.uniforms.uTexture, target.attach(0)); blit(newFBO); return newFBO; } function resizeDoubleFBO(target, w, h, internalFormat, format, type, param) { if (target.width == w && target.height == h) return target; target.read = resizeFBO(target.read, w, h, internalFormat, format, type, param); target.write = createFBO(w, h, internalFormat, format, type, param); target.width = w; target.height = h; target.texelSizeX = 1.0 / w; target.texelSizeY = 1.0 / h; return target; } function updateKeywords() { let displayKeywords = []; if (config.SHADING) displayKeywords.push("SHADING"); displayMaterial.setKeywords(displayKeywords); } updateKeywords(); initFramebuffers(); let lastUpdateTime = Date.now(); let colorUpdateTimer = 0.0; function update() { const dt = calcDeltaTime(); if (resizeCanvas()) initFramebuffers(); updateColors(dt); applyInputs(); step(dt); render(null); requestAnimationFrame(update); } function calcDeltaTime() { let now = Date.now(); let dt = (now - lastUpdateTime) / 1000; dt = Math.min(dt, 0.016666); lastUpdateTime = now; return dt; } function resizeCanvas() { let width = scaleByPixelRatio(canvas.clientWidth); let height = scaleByPixelRatio(canvas.clientHeight); if (canvas.width != width || canvas.height != height) { canvas.width = width; canvas.height = height; return true; } return false; } function updateColors(dt) { colorUpdateTimer += dt * config.COLOR_UPDATE_SPEED; if (colorUpdateTimer >= 1) { colorUpdateTimer = wrap(colorUpdateTimer, 0, 1); pointers.forEach(p => { p.color = generateColor(); }); } } function applyInputs() { pointers.forEach(p => { if (p.moved) { p.moved = false; splatPointer(p); } }); } function step(dt) { gl.disable(gl.BLEND); curlProgram.bind(); gl.uniform2f(curlProgram.uniforms.texelSize, velocity.texelSizeX, velocity.texelSizeY); gl.uniform1i(curlProgram.uniforms.uVelocity, velocity.read.attach(0)); blit(curl); vorticityProgram.bind(); gl.uniform2f(vorticityProgram.uniforms.texelSize, velocity.texelSizeX, velocity.texelSizeY); gl.uniform1i(vorticityProgram.uniforms.uVelocity, velocity.read.attach(0)); gl.uniform1i(vorticityProgram.uniforms.uCurl, curl.attach(1)); gl.uniform1f(vorticityProgram.uniforms.curl, config.CURL); gl.uniform1f(vorticityProgram.uniforms.dt, dt); blit(velocity.write); velocity.swap(); divergenceProgram.bind(); gl.uniform2f(divergenceProgram.uniforms.texelSize, velocity.texelSizeX, velocity.texelSizeY); gl.uniform1i(divergenceProgram.uniforms.uVelocity, velocity.read.attach(0)); blit(divergence); clearProgram.bind(); gl.uniform1i(clearProgram.uniforms.uTexture, pressure.read.attach(0)); gl.uniform1f(clearProgram.uniforms.value, config.PRESSURE); blit(pressure.write); pressure.swap(); pressureProgram.bind(); gl.uniform2f(pressureProgram.uniforms.texelSize, velocity.texelSizeX, velocity.texelSizeY); gl.uniform1i(pressureProgram.uniforms.uDivergence, divergence.attach(0)); for (let i = 0; i < config.PRESSURE_ITERATIONS; i++) { gl.uniform1i(pressureProgram.uniforms.uPressure, pressure.read.attach(1)); blit(pressure.write); pressure.swap(); } gradienSubtractProgram.bind(); gl.uniform2f(gradienSubtractProgram.uniforms.texelSize, velocity.texelSizeX, velocity.texelSizeY); gl.uniform1i(gradienSubtractProgram.uniforms.uPressure, pressure.read.attach(0)); gl.uniform1i(gradienSubtractProgram.uniforms.uVelocity, velocity.read.attach(1)); blit(velocity.write); velocity.swap(); advectionProgram.bind(); gl.uniform2f(advectionProgram.uniforms.texelSize, velocity.texelSizeX, velocity.texelSizeY); if (!ext.supportLinearFiltering) gl.uniform2f(advectionProgram.uniforms.dyeTexelSize, velocity.texelSizeX, velocity.texelSizeY); let velocityId = velocity.read.attach(0); gl.uniform1i(advectionProgram.uniforms.uVelocity, velocityId); gl.uniform1i(advectionProgram.uniforms.uSource, velocityId); gl.uniform1f(advectionProgram.uniforms.dt, dt); gl.uniform1f(advectionProgram.uniforms.dissipation, config.VELOCITY_DISSIPATION); blit(velocity.write); velocity.swap(); if (!ext.supportLinearFiltering) gl.uniform2f(advectionProgram.uniforms.dyeTexelSize, dye.texelSizeX, dye.texelSizeY); gl.uniform1i(advectionProgram.uniforms.uVelocity, velocity.read.attach(0)); gl.uniform1i(advectionProgram.uniforms.uSource, dye.read.attach(1)); gl.uniform1f(advectionProgram.uniforms.dissipation, config.DENSITY_DISSIPATION); blit(dye.write); dye.swap(); } function render(target) { gl.blendFunc(gl.ONE, gl.ONE_MINUS_SRC_ALPHA); gl.enable(gl.BLEND); drawDisplay(target); } function drawDisplay(target) { let width = target == null ? gl.drawingBufferWidth : target.width; let height = target == null ? gl.drawingBufferHeight : target.height; displayMaterial.bind(); if (config.SHADING) gl.uniform2f(displayMaterial.uniforms.texelSize, 1.0 / width, 1.0 / height); gl.uniform1i(displayMaterial.uniforms.uTexture, dye.read.attach(0)); blit(target); } function splatPointer(pointer) { let dx = pointer.deltaX * config.SPLAT_FORCE; let dy = pointer.deltaY * config.SPLAT_FORCE; splat(pointer.texcoordX, pointer.texcoordY, dx, dy, pointer.color); } function clickSplat(pointer) { const color = generateColor(); color.r *= 10.0; color.g *= 10.0; color.b *= 10.0; let dx = 10 * (Math.random() - 0.5); let dy = 30 * (Math.random() - 0.5); splat(pointer.texcoordX, pointer.texcoordY, dx, dy, color); } function splat(x, y, dx, dy, color) { splatProgram.bind(); gl.uniform1i(splatProgram.uniforms.uTarget, velocity.read.attach(0)); gl.uniform1f(splatProgram.uniforms.aspectRatio, canvas.width / canvas.height); gl.uniform2f(splatProgram.uniforms.point, x, y); gl.uniform3f(splatProgram.uniforms.color, dx, dy, 0.0); gl.uniform1f(splatProgram.uniforms.radius, correctRadius(config.SPLAT_RADIUS / 100.0)); blit(velocity.write); velocity.swap(); gl.uniform1i(splatProgram.uniforms.uTarget, dye.read.attach(0)); gl.uniform3f(splatProgram.uniforms.color, color.r, color.g, color.b); blit(dye.write); dye.swap(); } function correctRadius(radius) { let aspectRatio = canvas.width / canvas.height; if (aspectRatio > 1) radius *= aspectRatio; return radius; } // Event listeners for interaction window.addEventListener('mousedown', e => { let pointer = pointers[0]; let posX = scaleByPixelRatio(e.clientX); let posY = scaleByPixelRatio(e.clientY); updatePointerDownData(pointer, -1, posX, posY); clickSplat(pointer); }); window.addEventListener('mousemove', e => { let pointer = pointers[0]; let posX = scaleByPixelRatio(e.clientX); let posY = scaleByPixelRatio(e.clientY); updatePointerMoveData(pointer, posX, posY, pointer.color); }); window.addEventListener('touchstart', e => { const touches = e.targetTouches; let pointer = pointers[0]; for (let i = 0; i < touches.length; i++) { let posX = scaleByPixelRatio(touches[i].clientX); let posY = scaleByPixelRatio(touches[i].clientY); updatePointerDownData(pointer, touches[i].identifier, posX, posY); } }); window.addEventListener('touchmove', e => { const touches = e.targetTouches; let pointer = pointers[0]; for (let i = 0; i < touches.length; i++) { let posX = scaleByPixelRatio(touches[i].clientX); let posY = scaleByPixelRatio(touches[i].clientY); updatePointerMoveData(pointer, posX, posY, pointer.color); } }, false); window.addEventListener('touchend', e => { const touches = e.changedTouches; let pointer = pointers[0]; for (let i = 0; i < touches.length; i++) { updatePointerUpData(pointer); } }); // Helper functions for pointer interactions function updatePointerDownData(pointer, id, posX, posY) { pointer.id = id; pointer.down = true; pointer.moved = false; pointer.texcoordX = posX / canvas.width; pointer.texcoordY = 1.0 - posY / canvas.height; pointer.prevTexcoordX = pointer.texcoordX; pointer.prevTexcoordY = pointer.texcoordY; pointer.deltaX = 0; pointer.deltaY = 0; pointer.color = generateColor(); } function updatePointerMoveData(pointer, posX, posY, color) { pointer.prevTexcoordX = pointer.texcoordX; pointer.prevTexcoordY = pointer.texcoordY; pointer.texcoordX = posX / canvas.width; pointer.texcoordY = 1.0 - posY / canvas.height; pointer.deltaX = correctDeltaX(pointer.texcoordX - pointer.prevTexcoordX); pointer.deltaY = correctDeltaY(pointer.texcoordY - pointer.prevTexcoordY); pointer.moved = Math.abs(pointer.deltaX) > 0 || Math.abs(pointer.deltaY) > 0; pointer.color = color; } function updatePointerUpData(pointer) { pointer.down = false; } function correctDeltaX(delta) { let aspectRatio = canvas.width / canvas.height; if (aspectRatio < 1) delta *= aspectRatio; return delta; } function correctDeltaY(delta) { let aspectRatio = canvas.width / canvas.height; if (aspectRatio > 1) delta /= aspectRatio; return delta; } // Color generation functions function generateColor() { let c = HSVtoRGB(Math.random(), 1.0, 1.0); c.r *= 0.15; c.g *= 0.15; c.b *= 0.15; return c; } function HSVtoRGB(h, s, v) { let r, g, b, i, f, p, q, t; i = Math.floor(h * 6); f = h * 6 - i; p = v * (1 - s); q = v * (1 - f * s); t = v * (1 - (1 - f) * s); switch (i % 6) { case 0: r = v, g = t, b = p; break; case 1: r = q, g = v, b = p; break; case 2: r = p, g = v, b = t; break; case 3: r = p, g = q, b = v; break; case 4: r = t, g = p, b = v; break; case 5: r = v, g = p, b = q; break; } return { r, g, b }; } // Utility functions function wrap(value, min, max) { let range = max - min; if (range == 0) return min; return (value - min) % range + min; } function getResolution(resolution) { let aspectRatio = gl.drawingBufferWidth / gl.drawingBufferHeight; if (aspectRatio < 1) aspectRatio = 1.0 / aspectRatio; let min = Math.round(resolution); let max = Math.round(resolution * aspectRatio); if (gl.drawingBufferWidth > gl.drawingBufferHeight) return { width: max, height: min }; else return { width: min, height: max }; } function scaleByPixelRatio(input) { let pixelRatio = window.devicePixelRatio || 1; return Math.floor(input * pixelRatio); } function hashCode(s) { if (s.length == 0) return 0; let hash = 0; for (let i = 0; i < s.length; i++) { hash = (hash << 5) - hash + s.charCodeAt(i); hash |= 0; // Convert to 32bit integer } return hash; } // Start the animation update(); // Add some initial splats to make it interesting setTimeout(() => { for (let i = 0; i < 5; i++) { const color = generateColor(); color.r *= 10.0; color.g *= 10.0; color.b *= 10.0; const x = Math.random(); const y = Math.random(); const dx = 1000 * (Math.random() - 0.5); const dy = 1000 * (Math.random() - 0.5); splat(x, y, dx, dy, color); } }, 100); // Handle window resize window.addEventListener('resize', () => { resizeCanvas(); }); }; })(); </script> </div> <!-- End of JavaScript for WebGL Fluid Background Effect --> </script> <!-- JAVASCRIPT SECTION END --> </div>
WebGL Fluid Background Effect
This widget creates an interactive fluid simulation that responds to mouse/touch movements with dynamic, colorful particle animations. The effect runs using WebGL for hardware-accelerated rendering and sits as an overlay above your web content.
Implementation
The WebGL Fluid Effect creates a canvas that covers the entire viewport and renders a real-time physics-based fluid simulation. When users interact with the page, the fluid responds with realistic movement and color transitions. The effect uses high-performance WebGL shaders for smooth animation even on complex pages.
HTML Structure
The widget uses a minimal HTML structure:
- A main container div#webgl-fluid-background that holds everything
- A canvas element canvas#fluid where the WebGL rendering occurs
- Internal styling and JavaScript for self-contained functionality
CSS Styling
The CSS handles positioning and interaction:
- Uses position: fixed with top: 0; left: 0; to cover the entire viewport
- Sets z-index: 99999 to position above all other page content
- Applies pointer-events: none to allow clicks to pass through to elements underneath
- Optionally uses mix-blend-mode: screen for enhanced visual integration with content
JavaScript Functionality
The JavaScript handles the complex WebGL implementation:
- WebGL Context: Sets up a WebGL rendering context with appropriate parameters
- Shader Programs: Implements multiple shader programs for:
- Fluid dynamics physics simulation
- Particle rendering and coloring
- Velocity, pressure, and curl calculations
- Interaction Handling: Captures mouse/touch events to influence the fluid simulation
- Animation Loop: Uses requestAnimationFrame for smooth rendering
- Responsive Design: Automatically adjusts to window resizing
- Performance Optimization: Implements resolution scaling for different devices
Blend Mode Toggle
The effect includes a configurable blend mode:
- Controlled through the blendModeActive variable in JavaScript
- When active, applies mix-blend-mode: screen for a light-blending effect
- When inactive, renders as a standard overlay without color blending
- Toggle by changing the variable from true to false
Customization Options
You can customize various aspects of the fluid simulation:
- Resolution: Adjust SIM_RESOLUTION (lower for better performance, higher for better quality)
- Speed: Modify VELOCITY_DISSIPATION to change how quickly the fluid movement decays
- Color Intensity: Change DENSITY_DISSIPATION to control color persistence
- Effect Strength: Adjust SPLAT_FORCE to change how strongly mouse movements affect the fluid
- Visual Style: Toggle SHADING for different lighting effects
- Z-Index: Change the z-index value to position the effect at different layers
Browser Compatibility
The widget supports most modern browsers:
- Uses WebGL 2 with fallback to WebGL 1 for older browsers
- Automatically detects and adapts to browser capabilities
- Supports both desktop and mobile devices with touch detection
- Adjusts performance settings based on device capabilities
- Works across Chrome, Firefox, Safari, and Edge
Integration Tips
When adding to your website:
- Place the code in a global container that's not restricted by parent element dimensions
- For Duda sites, add as an HTML widget directly to the page structure
- Consider reducing SIM_RESOLUTION on pages with heavy content
- Test on mobile devices to ensure performance meets expectations
- Adjust the z-index if certain elements need to appear below the effect
Resource Details:
WebGL Fluid Background Effect creates an interactive, colorful fluid simulation that floats above your website content. The effect responds to mouse/touch movements with dynamic particle animations that flow naturally across the screen. Features customizable blend modes, responsive design, and click-through functionality so users can interact with your site normally. Implemented with high-performance WebGL shaders for smooth animation on any device. Simple HTML/CSS/JS implementation with adjustable settings for simulation quality, color intensity, and effect positioning.

NO-ACCESS
Only for Desktop Users
This page is only available on desktop.
Please Log in on a desktop to gain access.